THE PARROT UAV CONTROLLED BY PID CONTROLLERS

Andrzej KOSZEWNIk

Faculty of Mechanical Engineering, Department of Automatic Control and Robotics, Bialystok University of Technology, ul. Wiejska 45C, 15-131 Bialystok, Poland

a.koszewnik@pb.edu.pl

Abstract: The paper presents the process of modeling and designing control laws for four-rotor type of the Parrot UAV. The state space model is obtained by using several phenomena like gyroscopic effects for rigid bodies, propellers and rotors. The obtained model has been used to design PID control laws for roll, pitch, yaw angle and altitude, respectively. The numerical simulations of the closed loop model are shown that system in satisfy way stabilize flight of the quadro-rotor in all considered directions.

Key words: PID Control, Parrot, Quadro-Rotor, Modeling

1. INTRODUCTION

Autonomous Unmanned Air Vehicle (UAV) are increasingly popular platforms, due to their use in military applications, traffic surveillance, environment exploration, structure inspections, mapping and aerial cinematography. For these applications, the ability of quadro-rotor to take off and land vertically, to perform hover flight as well as their agility, make them ideal vehicles.

UAV’s exhibit further advantages in the manoeuvrability features. Such vehicles require little human intervention from take-off to landing. This helicopter is one of the most complex flying system that exist. This is partly due to the number of physical effects (aerodynamics effects, gravity, gyroscopic, friction and inertial counter torques) acting on the system (Derafa et al., 2007; Kimon, 2007).

Helicopters and quadro-rotors are dynamically unstable and therefore suitable control methods are needed to stabilize them. In order to be able to optimize the operation of the control loop in terms of stability, precision and reaction time, it is essential to know the dynamic behavior of the process which can be established by a representative mathematical model.

2. DYNAMIC MODELING OF THE PARROT

The Parrot is equipped with the four-rotor helicopter. Each rotor includes a dedicated brush-less direct current motor, a gearbox and a propeller. The two pairs of propellers (1, 3) and (2, 4) turn in opposite directions. Forward motion is accomplished by increasing the speed of the rear rotor while simultaneously reducing the forward rotor by the same amount. Left and right motion work in same way. Yaw command is accomplished by accelerating the two clockwise rotating rotors while decelerating the counter-clockwise rotating rotors. Parameters of the Parrot are collected in Tab. 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>0.38 kg (outdoor)</td>
<td>Mass (including the support)</td>
</tr>
<tr>
<td>l</td>
<td>0.17 m</td>
<td>Distance between rotor and center of mass</td>
</tr>
<tr>
<td>Ω</td>
<td>28 500 rpm</td>
<td>Max angular speed of the rotor - inrunner -14.5 V</td>
</tr>
<tr>
<td>η</td>
<td>1/8.75</td>
<td>Ratio of angular speed propeller to rotor</td>
</tr>
<tr>
<td>β</td>
<td>8x3.8</td>
<td>Diameter x stroke of propeller</td>
</tr>
</tbody>
</table>

Tab. 1. Parameters of the Parrot (Developer Guide SDK 1.7)
The quadrotor dynamic model is connected with twelve degrees of freedom. The absolute position of the center of mass of quadrotor is described by $\xi = [x, y, z]^T$ and its attitude by the three Euler’s angles $\alpha = [\phi, \theta, \psi]^T$. Moreover the model is described by derivatives of absolute position and Euler’s angles $[\dot{x}, \dot{y}, \dot{z}, \dot{\phi}, \dot{\theta}, \dot{\psi}]^T$. These three angles are respectively pitch angle $-\frac{\pi}{2} \leq \phi \leq \frac{\pi}{2}$, roll angle $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$ and yaw angle $-\pi \leq \psi \leq \pi$.

The dynamic model of the quadrotor describing the roll, pitch and yaw rotations contains three terms which are:

- gyroscopic effect resulting from the rigid body rotation,
- gyroscopic effect resulting from the propeller rotation coupled with the body rotation
- action of the actuators.

The dynamic model of the quadrotor versus the horizon. Neglecting hub forces and friction action, the equations in x, y, z directions are determined via the Newton-Euler formalism:

\[
\ddot{m} = mg - (\cos \psi - \cos \phi) \sum_{i=1}^{4} \Omega_i^2
\]

\[
\ddot{m} = (\cos \phi \sin \theta \cos \psi + \sin \phi \sin \psi) \sum_{i=1}^{4} \Omega_i^2
\]

\[
\ddot{m} = (\cos \phi \sin \theta \sin \psi - \sin \phi \cos \psi) \sum_{i=1}^{4} \Omega_i^2
\]

In the next step, the model of the Parrot described by Eq(1) and Eq(2) is simplified, by inserting new constant values ($a_1,...,a_5$ and $b_1..b_3$), input signals $U_1,...,U_4$ and parameters μx and νy. Then the model of the quadro-rotor is transformed to(Clavel et al., 2007):

\[
\ddot{\phi} = \phi_a_1 \phi_a_2 \phi_a_3 \phi_a_4 \phi_a_5 \phi_a_6 \phi_a_7 \phi_a_8 \phi_a_9 \phi_a_{10} \phi_a_{11} \phi_a_{12}
\]

\[
\ddot{\phi} = \phi_a_1 \phi_a_2 \phi_a_3 \phi_a_4 \phi_a_5 \phi_a_6 \phi_a_7 \phi_a_8 \phi_a_9 \phi_a_{10} \phi_a_{11} \phi_a_{12}
\]

\[
\ddot{\phi} = \phi_a_1 \phi_a_2 \phi_a_3 \phi_a_4 \phi_a_5 \phi_a_6 \phi_a_7 \phi_a_8 \phi_a_9 \phi_a_{10} \phi_a_{11} \phi_a_{12}
\]

\[
\ddot{\phi} = \phi_a_1 \phi_a_2 \phi_a_3 \phi_a_4 \phi_a_5 \phi_a_6 \phi_a_7 \phi_a_8 \phi_a_9 \phi_a_{10} \phi_a_{11} \phi_a_{12}
\]

where:

\[
U_1 = b(\Omega_1^2 + \Omega_2^2 + \Omega_3^2 + \Omega_4^2)
\]

\[
U_2 = b(-\Omega_2^2 + \Omega_4^2)
\]

\[
U_3 = b(-\Omega_4^2 - \Omega_3^2)
\]

\[
U_4 = d(-\Omega_1^2 + \Omega_3^2 - \Omega_2^2 + \Omega_4^2)
\]

and:

\[
u_x = (\cos \phi \sin \theta \cos \psi + \sin \phi \sin \psi)
\]

\[
u_y = (\cos \phi \sin \theta \sin \psi - \sin \phi \cos \psi)
\]

Moreover the quadrotor model describes the position of the Parrot versus the horizon. Neglecting hub forces and friction action, the equations in x,y,z directions are determined via the Newton-Euler formalism:

\[
\dot{X} = A x + B u
\]

where:

\[
A_{12x12} =
\]

\[
B_{12x4} =
\]

with:

\[
a_{32} = \psi \cdot a_3 + a_4 \cdot \Omega_r
\]

\[
a_{24} = \psi \cdot a_4 + a_3 \cdot \Omega_r
\]
The dynamic model of the open loop system is expressed by matrices which values are derived from calculations and assumptions. Some of these parameters are calculated on basic parameters given in Tab.1 and Tab. 2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_{xx}</td>
<td>0.0086 [kgm²]</td>
<td>Calculated</td>
</tr>
<tr>
<td>J_{yy}</td>
<td>0.0086 [kgm²]</td>
<td>Calculated</td>
</tr>
<tr>
<td>J_{zz}</td>
<td>0.0172 [kgm²]</td>
<td>Calculated</td>
</tr>
<tr>
<td>b</td>
<td>3.13e-5</td>
<td>Assumed</td>
</tr>
<tr>
<td>d</td>
<td>7.5e-7</td>
<td>Assumed</td>
</tr>
<tr>
<td>J_r</td>
<td>6e-5 [kgm²]</td>
<td>Assumed</td>
</tr>
</tbody>
</table>

3. DESIGN OF THE CONTROL LAW

The main objective is to design the classic control law in order to stabilize the yaw, pitch and roll angles and the altitude of the Parrot. Stabilization of the platform is achieved by designing four separate PID controllers controlling pitch, yaw roll angles and the altitude position, respectively. Since the input signals of the model are angular velocities of particular rotors, so the obtained values of the control signals in the closed loop system need to be multiplied by the gain matrix K, represents transformation controller outputs to speed inputs for each rotor. The obtained block diagram with all controllers is shown in Fig. 3.

$$\Omega_i = U_i \cdot K$$

where: i-th rotor of the Parrot ($i=1,...,4$)

$$K = \begin{bmatrix}
\frac{1}{4b} & \frac{1}{4b} & \frac{1}{4b} & \frac{1}{4b} \\
0 & -\frac{1}{2b} & 0 & \frac{1}{2b} \\
\frac{1}{2b} & 0 & -\frac{1}{2b} & 0 \\
-\frac{1}{4d} & 1 & -\frac{1}{4d} & 1 & -\frac{1}{4d}
\end{bmatrix} \cdot 1e5 \cdot \begin{bmatrix}
0.0799 \\
0.9397 \\
-3.333 \\
-3.333
\end{bmatrix}$$

![Fig. 2. Block diagram of the closed-loop system](image-url)
In the first step the altitude controller is designed to stabilize
the vertical position of the platform. The first input of the controller
is the altitude error that is the difference between the altitude
value and the measurement value and the second - velocity
in Z direction – z as altitude d_error. The control law of this PID
controller is as follows (Bouabdallah and North, 2004):
\[
\dot{e}_z = \ddot{z} - z
\]
\[
e_z = z_{SET} - z
\]
\[
u_z = k_p \cdot e_z + k_i \cdot \int e_z + k_d \cdot \dot{e}_z
\]
where: \(z_{dot} \) – velocity of the Parrot in Z direction, \(z_{SET} \) – desired
altitude of the Parrot in Z direction.

Finally, the transfer function of the controller is:
\[
PID(s) = \frac{k_d s + k_i}{s} + k_p
\]
(9)

During the simulations the changes of pitch, roll and yaw
angles are assumed as zero. As a result, the PID controller
generated only control signal U1 that caused hovering or falling of
the model in vertical direction. Ipso facto all lift forces generated
by rotors have the same value. Parameters of such PID controller
are chosen by using the trial and error method and equal
to: \(k_{p, alt} = 12 \), \(k_{i, alt} = 1.5 \), \(k_{d, alt} = 6 \), respectively.

![Fig. 3. Altitude response of the closed-loop system](image)

As we can see in Fig.3, the closed loop system
is characterized by very short time constant, specially in time
range 20-100 s. Taking into account the first 20 seconds of simulation
we can see that the system does not achieve desired
value of 0.8m. Perhaps it was caused by earlier assumption that
the initial conditions of simulation equal to zero.

The next step of the simulation is connected with the design
of the pitch controller. Once again, based on two signals: pitch
angle and velocity change of pitch angle – \(\theta_{dot} \) the parameters of the controller are chosen as follows: \(k_{p, \theta} = 2.0 \), \(k_{i, \theta} = 0 \), \(k_{d, \theta} = 0.15 \), respectively. Finally the transfer function of the controller is:
\[
PID_{\theta}(s) = 0.15s + 0.2
\]
(10)

The controller \(PID_{\theta}(s) \) generates the control signal U3
directly influencing the angular velocity of both front and rear
rotors and indirectly influencing control signals U1 and U4.
Therefore, in order to verify the parameters of the pitch controller
the desired trajectory of pitch and roll angles and the altitude
should be included.

According to Fig.5 the parameters of the pitch controller are
correct. Measurement value of the pitch angle follows the desired
trajectory. Moreover both pitch and altitude signals are coupled
what is shown on appropriate plots. The small overshoot of the
pitch angle at the 22 second of simulation caused small falling of
the model. After that both signals once again tried achieve the set
value. At this same times others signals: roll and yaw angle still
have values of zero. Such behaviour of the closed loop model
course it is a correct.

The next stage of simulation is connected with the design
of the yaw controller. In order to choose proper values the
parameters of the controller yaw and yaw dot signals are taken as
inputs. Finally, the parameters of the controller are as follow:
\(k_{p, yaw} = 0.1 \), \(k_{i, yaw} = 0 \), \(k_{d, yaw} = 0.06 \), respectively, which lead to
the transfer function described as:
\[
PID_{yaw}(s) = 0.06s + 0.1
\]
(11)

The yaw controller generated the control signal U4 which
influenced only the yaw angle. Thus, change of yaw angle does
not caused change of other angles and altitude of the model.
Moreover, how we can see in Fig.7 the model with PID_yaw
controller very fast achived desired value. So, the closed loop
model according with desired impulse very fast in first step rotates
in right side and next left side.
4. SUMMARY AND CONCLUSIONS

The paper shows the modelling and control of the quadro-rotor of the Parrot. The first part is connected with derivation of the mathematical model by using Newton-Euler method. The obtained model is a MIMO model, so in the next step the model is simplified and rewritten to the state space form with 12 variables of the state space vector.

Then the model is decoupled and for each signals: roll, pitch and yaw angles and the altitude the PID controllers are designed. The obtained results for all controllers proved that the whole closed loop system correctly stabilizes the motion of the Parrot.

In further investigations, the design of the global control law between two Parrots will be considered. One of them will be a leader and the second will be a follower. Then, the results of such simulations for both Parrots (Leader-Follower) will be implemented to the auto-pilot in order to verify the control algorithms.

REFERENCES